Home Commodities Global food-miles account for nearly 20% of total food-systems emissions

Global food-miles account for nearly 20% of total food-systems emissions

10
0

  • The State of Agricultural Commodity Markets 2020. Agricultural Markets and Sustainable Development: Global Value Chains, Smallholder Farmers and Digital Innovations (FAO, 2020).

  • Martin, W. & Laborde Debucquet, D. in 2018 Global Food Policy Report, Ch. 3 (IFPRI, 2018); https://doi.org/10.2499/9780896292970_03

  • Porkka, M., Kummu, M., Siebert, S. & Varis, O. From food insufficiency towards trade dependency: a historical analysis of global food availability. PLoS ONE 8, e82714 (2013).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Porkka, M., Guillaume, J. H., Siebert, S., Schaphoff, S. & Kummu, M. The use of food imports to overcome local limits to growth. Earth’s Future 5, 393–407 (2017).

    ADS 
    Article 

    Google Scholar
     

  • MacDonald, G. K. et al. Rethinking agricultural trade relationships in an era of globalization. BioScience 65, 275–289 (2015).

    Article 

    Google Scholar
     

  • D’Odorico, P., Carr, J. A., Laio, F., Ridolfi, L. & Vandoni, S. Feeding humanity through global food trade. Earth’s Future 2, 458–469 (2014).

    ADS 
    Article 

    Google Scholar
     

  • Kissinger, M. International trade related food miles—the case of Canada. Food Policy 37, 171–178 (2012).

    Article 

    Google Scholar
     

  • Food Miles (DEFRA, 2011); http://adlib.everysite.co.uk/adlib/defra/content.aspx?id=000HK277ZX.0C90163GX9GA35

  • Andersson, K., Ohlsson, T. & Olsson, P. Screening life cycle assessment (LCA) of tomato ketchup: a case study. J. Clean. Prod. 6, 277–288 (1998).

    Article 

    Google Scholar
     

  • Marletto, G. & Sillig, C. Environmental impact of Italian canned tomato logistics: national vs. regional supply chains. J. Transp. Geogr. 34, 131–141 (2014).

    Article 

    Google Scholar
     

  • Wiedemann, S. et al. Environmental impacts and resource use of Australian beef and lamb exported to the USA determined using life cycle assessment. J. Clean. Prod. 94, 67–75 (2015).

    Article 

    Google Scholar
     

  • Meisterling, K., Samaras, C. & Schweizer, V. Decisions to reduce greenhouse gases from agriculture and product transport: LCA case study of organic and conventional wheat. J. Clean. Prod. 17, 222–230 (2009).

    CAS 
    Article 

    Google Scholar
     

  • Denham, F. C., Biswas, W. K., Solah, V. A. & Howieson, J. R. Greenhouse gas emissions from a Western Australian finfish supply chain. J. Clean. Prod. 112, 2079–2087 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Lenzen, M. Errors in conventional and input–output-based life-cycle inventories. J. Ind. Ecol. 4, 127–148 (2000).

    Article 

    Google Scholar
     

  • Tobarra, M. A., Lopez, L. A., Cadarso, M. A., Gomez, N. & Cazcarro, I. Is seasonal households’ consumption good for the nexus carbon/water footprint? The Spanish fruits and vegetables case. Environ. Sci. Technol. 52, 12066–12077 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Smith, A., Watkiss, P., Tweddle, G. & McKinnon, A. C. The Validity of Food Miles as an Indicator of Sustainable Development (DEFRA, 2005).

  • Kissinger, M. International trade related food miles—the case of Canada. Food Policy 37, 171–178 (2012).

    Article 

    Google Scholar
     

  • Neira, D. P., Fernandez, X. S., Rodriguez, D. C., Montiel, M. S. & Cabeza, M. D. Analysis of the transport of imported food in Spain and its contribution to global warming. Renew. Agric. Food Syst. 31, 37–48 (2016).

    Article 

    Google Scholar
     

  • Mosammam, H. M., Sarrafi, M., Nia, J. T. & Mosammam, A. M. Analyzing the international trade-related food miles in Iran. Outlook Agric. 47, 36–43 (2018).

    Article 

    Google Scholar
     

  • Pradhan, P. et al. Urban food systems: how regionalization can contribute to climate change mitigation. Environ. Sci. Technol. 54, 10551–10560 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Poore, J. & Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 360, 987–992 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Crippa, M. et al. Food systems are responsible for a third of global anthropogenic GHG emissions. Nature Food 2, 198–209 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Rosenzweig, C. et al. Climate change responses benefit from a global food system approach. Nat. Food 1, 94–97 (2020).

    Article 

    Google Scholar
     

  • Clark, M. A. et al. Global food system emissions could preclude achieving the 1.5° and 2 °C climate change targets. Science 370, 705–708 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lenzen, M. et al. International trade drives biodiversity threats in developing nations. Nature 486, 109–112 (2012).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Oita, A. et al. Substantial nitrogen pollution embedded in international trade. Nat. Geosci. 9, 111–115 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Lenzen, M. et al. The carbon footprint of global tourism. Nat. Clim. Change 8, 522 (2018).

    ADS 
    Article 

    Google Scholar
     

  • Janssens-Maenhout, G. et al. EDGAR v4.3.2 global atlas of the three major greenhouse gas emissions for the period 1970–2012. Earth Syst. Sci. Data Discuss. 2017, 1–55 (2017).


    Google Scholar
     

  • ITF Transport Outlook 2019 (ITF, 2019).

  • The Carbon Footprint of Global Trade (ITF, 2015).

  • Lenzen, M., Li, M. & Murray, S. A. Impacts of harmful algal blooms on marine aquaculture in a low-carbon future. Harmful Algae 110, 102143 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • The Future of Food and Agriculture: Trends and Challenges (FAO, 2017).

  • Food Product Environmental Footprint Literature Summary: Food Transportation (State of Oregon, Department of Environmental Quality, 2017).

  • Wakeland, W., Cholette, S. & Venkat, K. in Green Technologies in Food Production and Processing (eds Boye, J. I. & Arcand, Y.) 211–236 (Springer, 2012).

  • Kreidenweis, U., Lautenbach, S. & Koellner, T. Regional or global? The question of low-emission food sourcing addressed with spatial optimization modelling. Environ. Modelling Softw. 82, 128–141 (2016).

    Article 

    Google Scholar
     

  • Born, B. & Purcell, M. Avoiding the local trap: scale and food systems in planning research. J. Plan. Educ. Res. 26, 195–207 (2006).

    Article 

    Google Scholar
     

  • Webb, J., Williams, A. G., Hope, E., Evans, D. & Moorhouse, E. Do foods imported into the UK have a greater environmental impact than the same foods produced within the UK? Int. J. Life Cycle Assess. 18, 1325–1343 (2013).

    Article 

    Google Scholar
     

  • Pretty, J. N., Ball, A. S., Lang, T. & Morison, J. I. Farm costs and food miles: an assessment of the full cost of the UK weekly food basket. Food Policy 30, 1–19 (2005).

    Article 

    Google Scholar
     

  • Lopez, L. A., Cadarso, M. A., Gomez, N. & Tobarra, M. A. Food miles, carbon footprint and global value chains for Spanish agriculture: assessing the impact of a carbon border tax. J. Clean. Prod. 103, 423–436 (2015).

    Article 

    Google Scholar
     

  • Weber, C. L. & Matthews, H. S. Food-miles and the relative climate impacts of food choices in the United States. Environ. Sci. Technol. 42, 3508–3513 (2008).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kinnunen, P. et al. Local food crop production can fulfil demand for less than one-third of the population. Nat. Food 1, 229–237 (2020).

    Article 

    Google Scholar
     

  • Wood, S. A., Smith, M. R., Fanzo, J., Remans, R. & DeFries, R. S. Trade and the equitability of global food nutrient distribution. Nat. Sustain. 1, 34–37 (2018).

    Article 

    Google Scholar
     

  • Cornwell, A. Reducing carbon dioxide emissions in Australia: a minimum disruption approach. Aust. Econ. Rev. 29, 65–81 (1996).

    Article 

    Google Scholar
     

  • Creedy, J. & Sleeman, C. Carbon dioxide emissions reductions in New Zealand: a minimum disruption approach. Aust. Econ. Pap. 44, 199–220 (2005).

    Article 

    Google Scholar
     

  • To Transform the Global Food System and Feed the World Sustainably, Start at the Local Level (IFPRI, 2019).

  • Pradhan, P., Lüdeke, M. K. B., Reusser, D. E. & Kropp, J. P. Food self-sufficiency across scales: how local can we go? Environ. Sci. Technol. 48, 9463–9470 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kriewald, S., Pradhan, P., Costa, L., Ros, A. G. C. & Kropp, J. P. Hungry cities: how local food self-sufficiency relates to climate change, diets, and urbanisation. Environ. Res. Lett. 14, 094007 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Smith, A. et al. The Validity of Food Miles as an Indicator of Sustainable Development (DEFRA, 2005).

  • Godfray, H. C. J. et al. The future of the global food system. Philos. Trans. R. Soc. B Biol. Sci. 365, 2769–2777 (2010).

    Article 

    Google Scholar
     

  • Food Systems Hold Key to Ending World Hunger (United Nations Environment Programme, 2021).

  • Tackling Climate Change through Livestock (FAO, 2014).

  • Food Loss and Waste Must Be Reduced for Greater Food Security and Environmental Sustainability (United Nations Environment Programme, 2020).

  • Fischedick, M. et al. Industry. In Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) (Cambridge Univ. Press, 2014).

  • The Global Food System: An Analysis (World Wide Fund for Nature, 2017).

  • Spencer, S. & Kneebone, M. FoodMap: A Comparative Analysis of Australian Food Distribution Channels (Australian Government Department of Agriculture, Fisheries and Forestry, 2007).

  • Abate-Kassa, G. & Peterson, H. C. Market access for local food through the conventional food supply chain. Int. Food Agribus. Manage. Rev. 14, 63–82 (2011).


    Google Scholar
     

  • Sustainable Food Systems: Concept and Framework (FAO, 2018).

  • Mbow, C., et al. in Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems (eds Shukla, P. R. et al.) Ch. 5 (2019).

  • Leontief, W. Input–Output Economics (Oxford University Press, 1966).

  • Lenzen, M., Moran, D., Kanemoto, K. & Geschke, A. Building Eora: a global multi-region input–output database at high country and sector resolution. Econ. Syst. Res. 25, 20–49 (2013).

    Article 

    Google Scholar
     

  • Lenzen, M., Kanemoto, K., Moran, D. & Geschke, A. Mapping the structure of the world economy. Environ. Sci. Technol. 46, 8374–8381 (2012).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lenzen, M. et al. The Global MRIO Lab—charting the world economy. Econ. Syst. Res. 29, 158–186 (2017).

    Article 

    Google Scholar
     

  • National Accounts Main Aggregates Database (United Nations Statistics Division, 2020); https://unstats.un.org/unsd/snaama/

  • National Accounts Official Data (United Nations Statistics Division, 2019); http://data.un.org/Browse.aspx?d=SNA

  • Industrial Statistics Database at the 4-digit Level of ISIC (INDSTAT4) (UNIDO, 2019); http://www.unido.org/resources/statistics/statistical-databases.html

  • UN Comtrade—United Nations Commodity Trade Statistics Database (United Nations Statistics Division, 2019); http://comtrade.un.org

  • UN ServiceTrade (United Nations Statistics Division, 2019); https://unstats.un.org/unsd/servicetrade/default.aspx

  • FishStat—Software for Fishery and Aquaculture Statistical Time Series (FAO, 2017).

  • Geschke, A., Ugon, J., Lenzen, M., Kanemoto, K. & Moran, D. D. Balancing and reconciling large multi-regional input–output databases using parallel optimisation and high-performance computing. J. Econ. Struct. 8, 2 (2019).

    Article 

    Google Scholar
     

  • Lenzen, M., Gallego, B. & Wood, R. Matrix balancing under conflicting information. Econ. Syst. Res. 21, 23–44 (2009).

    Article 

    Google Scholar
     

  • Food Products Imports by World 2018 (WITS, 2018); https://wits.worldbank.org/CountryProfile/en/Country/WLD/Year/2018/TradeFlow/Import/Partner/all/Product/16-24_FoodProd

  • FAOSTAT Database (FAO, 2018).

  • Hall, O., Bustos, M. F. A., Olén, N. B. & Niedomysl, T. Population centroids of the world administrative units from nighttime lights 1992−2013. Sci. Data 6, 235 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Goods Transport (ITF, 2017); https://www.oecd-ilibrary.org/content/data/g2g5557d-en

  • Elvidge, C. D. et al. Relation between satellite observed visible-near infrared emissions, population, economic activity and electric power consumption. Int. J. Remote Sens. 18, 1373–1379 (1997).

    Article 

    Google Scholar
     

  • Source link

    Previous articleAXS Investments Rings the Open
    Next articleLiveLike Partners With Polygon Studios to Offer Web3 to Brands

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here